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SUMMARY

A new approach for optimal shape design is introduced. The main ingredients are an unstructured CAD-free
framework for geometry deformation and automatic differentiation (AD) in reverse mode. Transonic inviscid
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1. MOTIVATIONS

Two key points in optimal shape design when using a gradient method are a good evaluation of the

Jacobian of the cost function with respect to control parameters and a suitable shape and mesh

deformation algorithm.

Concerning the Jacobian, it is clear that if the number of control parameters is large, an adjoint

method is necessary. Adjoint methods are based on a linearization of the relation describing the

dependence between the cost function and the control parameters. This is usually realized at the

continuous level and not after discretization.1,2 Therefore the inconsistencies (such as the numerical

viscosity) of the numerical schemes cannot be exactly taken into account. The ®rst motivation of this

paper is to present our experience of automatic differentiation in reverse mode for optimal shape

design applications. As in this technique the Jacobian of the discrete cost function is evaluated, the

non-consistencies of the schemes are naturally taken into account. Moreover, the cost of the

evaluation is independent of the number of control parameters as in a classical adjoint method.

For shape deformations the dif®culty comes from the fact that CAD-based tools for shape

description are quite complicated and dif®cult to take into account when evaluating the Jacobian. Our

second motivation is to show that it is possible to consider all the mesh points on the body as control

points in so far as we preserve the initial regularity of the shape during the design process. This makes

it possible and easy to consider all kinds of shapes. In our optimization process the only geometrical

entity available is a two- or three-dimensional unstructured mesh.

Our third motivation is to see the effect of using different gradients, based on different numerical
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¯uxes used for the solution of the Euler equations, on the optimization procedure. We applied

automatic differentiation to Roe and Osher ¯uxes with the same second-order MUSCL construction.

In Reference 3 we showed that having a precise gradient taking into account in particular the MUSCL

construction affects not only the convergence but also the optimized shape. Here we want to see

whether having a smoother numerical ¯ux will have a similar effect. We also showed3 through an

inverse problem that our approach does not suffer from a change in the nature of the equations when

passing from the transonic to the supersonic regime. In this paper we consider not only inviscid ¯ows

but also viscous turbulent con®gurations.

Our last motivation is to show that using these techniques it is possible to perform 3D optimization

for compressible ¯ows on a workstation (con®gured at 10 M¯ops, 100 MB) through the night.

2. MODELS

We denote by J(x, U(x)) the cost function we want to minimize under geometric and aerodynamic

constraints. Here x indicates the geometrical description of a con®guration and the ¯ow pattern U(x)

around this shape is the solution of the steady Navier±Stokes and k±e4 system of ¯uid dynamics in

conservation form,

H � F�U � � S�U �; �1�
where U is the vector of conservative variables, i.e. U � �r; r~u; r�CvT � 1

2
juj2�; rk; re�T, F

represents the advective and diffusive operators and S contains the source terms of the k±e model.

This system has six equations in 2D (seven equations in 3D) for seven variables (eight variables in

3D) and is closed using the equation of state p� p(r, T). We do not take into account turbulent

contributions to the pressure and total energy.5

Turbulence modelling is done through a two-equation eddy viscosity model. Special wall laws

including pressure and convection effects and valid up to the wall have been used. These wall laws

are particularly suitable for separated and unsteady ¯ows. For instance, we managed to capture the

secondary eddy for a backward step and `Strouhal'-type unsteadiness behind a cylinder.6

In an optimization process involving mesh deformation, wall laws are more suitable than low-

Reynolds-number modelling (i.e. up to the wall). Indeed, this former approach requires much ®ner

meshes and conformal mesh deformation will be harder to achieve.

3. NUMERICS

The numerical technique is based on a ®nite volume±Galerkin approach on unstructured meshes.7±12

The convective part of the equations has been solved using a Roe9 or Osher12 approximate Riemann

solver together with MUSCL reconstruction and Van Albada limiters.10 The viscous term is

discretized using a classical piecewise linear ®nite element method. The time-dependent equation

@U

@t
� H � F�U � � S�U �

is marched in time to a steady state. Our time discretization is based on a four-stage Runge±Kutta

scheme. In¯ow and out¯ow boundary conditions are of characteristic type and for out¯ow boundaries

care has been taken to correctly treat subsonic con®gurations. Details of these techniques can be

found in References 7±12. A brief description of the governing equations and numerics is given in

Appendix I.
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4. OPTIMIZATION PROBLEM

We consider the following minimization problem:

min
xc

J �xc;U �xc��;
E�xc;U �xc�� � 0; g1�xc�4 0; g2�U �xc��4 0;

where xc 2 Rnc describes the control parameters, U 2 RN the ¯ow, E 2 RN the state equation and g1,2

direct (`geometrical', on xc) and indirect (`physical', on U(xc), such as a given lift) constraints.

Indirect constraints have been taken into account in the cost function by penalty. Geometrical

constraints are of three types. The ®rst one is imposed by de®ning two limiting surfaces (curves in

2D) between which shape variations are allowed. As all shapes in this paper are of wing type, the

second constraint is that the original plan-form should remain unchanged. This means for instance in

2D that the leading and trailing edges are frozen. The last constraint is that the volume of the wing

has to be conserved during optimization. The ®rst and second constraints have been taken into

account by projection and the last constraint by penalty in the cost function.

4.1. The gradient

To ®nd dJ=dxc, we can do one of the following.

1. Use ®nite differences:

dJ

dxc

�i� � J �~xc � E~ei� ÿ J �~xc ÿ E~ei�
2E

:

The dif®culties are the choice of E and a cost proportional to nc.

2. Avoid choosing E by using

@E

@U

@U

@xc

� ÿ @E
@xc

; �2�

which means using an implicit ¯ow solver after changing the right-hand side. After substitution we

have

dJ

dxc

� @J

@xc

� @J
@U

@U

@xc

:

However, the cost problem remains because @E=@xc 2 (N, nc) and we need to solve (2) nc times.

3. Introduce the Lagrangian L� J� pE and by the optimality conditions get

@L

@U
� @J

@U
� p

@E

@U
� 0; �3�

where to get p we again use the solver

@E

@U
X � f :

Hence after substitution we have

dJ

dxc

� @L

@xc

� @J

@xc

� p
@E

@xc

:

Here the cost is independent of ne but we still need to compute @E=@xc. This can be easily done using

AD in direct mode for instance.13
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4. Use AD in reverse mode to compute dJ=dxc to avoid solving (3) and assembling @E=@xc. In this

approach the lines of the programmes describing the relations between the variation in the design

variables and the cost function including the grid and the ¯ow equations are considered as constraints.

We associate with each of them a Lagrange multiplier p and we construct an augmented Lagrangian

L. The values of the Lagrange multipliers are obtained from the condition that the ®rst variations in L

with respect to intermediate (or dependent) variables vanish. The solution can always be obtained

simply by back substitution (hence the notion of reverse mode). Once the Lagrange multipliers are

evaluated, the gradient of L can be easily calculated (a brief description of AD is given in Appendix

II).

We use the automatic differentiator OdysseÂ e developed at INRIA.14±16 Both direct differentia-

tion, producing a Jacobian matrix or a gradient vector, and reverse mode, computing the cotangent

linear application, are implemented in OdysseÂ e. In References 17±19 the gradients obtained by

OdysseÂ e have been compared with those obtained using ®nite differences for similar problems.

This gradient is then used in a gradient method to solve the optimization problem. Our

minimization tool is quite simple. It is based on a gradient method with a ®xed descent step. As we

said, we use projection to take into account local geometrical constraints, while global constraints are

taken into account in the cost function using Lagrange multipliers.

More precisely, the algorithm is as follows (we denote J(xc, U(xc)) by J(x)):

x0 given;

for n � 1; 2; . . . do

xn � P�xnÿ1 ÿ lHxJ �xnÿ1��;
where P is the projection operator and

HxJ �
@J

@x
� @J

@U

� �T
@U

@x
:

5. GEOMETRICAL TOOLS

We describe the set of tools needed for mesh deformation from a variation in control parameters xc:

dxc ! dxw ! dxm;

where xw are the discretization points on the geometry and xm are the internal mesh nodes. To get the

Jacobian of the cost function with respect to control parameters, all these tools have to be

differentiated. However, the systems involved in this section are solved using iterative schemes. This

is a real problem when using the reverse mode of AD. Indeed, the intermediate states have to be

stored for the adjoint computation (see next section).

5.1. Shape deformation

Usually, for 2D applications, control points are ®tted by splines. Splines have two features.

1. They permit that nc << nw, with nw the size of xw.

2. They smooth the variations in control points when propagating to the other body points.

However, general 3D surface splines are quite complicated to handle, especially on unstructured

meshes. Indeed, this involves CAD concepts and deriving these objects is more dif®cult than the ¯uid

186 B. MOHAMMADI

INT. J. NUMER. METH. FLUIDS, VOL 25: 183±203 (1997) # 1997 by John Wiley & Sons, Ltd.



solver for instance. We introduce an unstructured framework for geometry modi®cations based on the

following points.

1. All the nodes on the shape are control points (i.e. nc� nw).

2. To avoid oscillations, a smoothing operator is de®ned over the shape. This can be, for instance,

a few `local' Jacobi iterations to solve the system

�I ÿ eD�d~xw � dxw; �4�
where dxÄw is the smoothed shape variation for the shape nodes and dxw is the variation given by

the optimization tool (see below). By `local' we mean that if the predicted shape is locally

smooth, it remains unchanged during this step.

The importance of this step can be understood by the following argument.

We want the variation dxw 2 C1(G) if G designs a variety of dimension n7 1 in a domain O 2 Rn.

From Sobolev inclusions we know that Hn(G� � C1(G). It is easy to understand that the gradient

method we use does not necessarily produce C1(G) variations dxw and therefore we need to project

them into Hn(G) (an example of this is given in Figure 1). This means that the projected variations

dxÄw are the solution of an elliptic system of degree n. However, as we are using a P1 discretization, a

second-order elliptic system is suf®cient, because the edges of the geometry are considered as

constraints for the design. Therefore we project the variations only into H2(G) even in 3D.

Once the variations xw are known, we have to expand them over all the mesh. This is done by

solving a volumic elasticity system which is also of the form of (4).

6. LIMITATIONS WHEN USING AD

The limitation of the reverse mode of AD comes from the required memory for Lagrange multipliers

(see Appendix II) and intermediate variables.

The need for intermediate variable storage can be understood by the following argument.

If nc is the number of controls, let f be a function f: Rnc! R such that

f �x� � f3 � f2 � f1 � f0�x�:

Figure 1. Smoothed and unsmoothed shapes. We can see that the gradient jumps through shocks and also produces a non-
smooth shape in leading edge regions. This is the result of the ®rst iteration of the optimization. If we continue, the shape

becomes more and more unsmooth
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For instance, in our case, f0 smooths the control point variations, f1 propagates the control point

variations over all the mesh, f2 computes the ¯ow and f3 evaluates the cost. The reverse mode

produces the Jacobian DTf: R! Rnc as

DT
x f � DT

x f0 � DT
f0�x�f1 � DT

f1
�1f0�x�f2 � DT

f2�f1�f0�x�f3:

We can see that we have to store (or recompute) the intermediate states (i.e. f0(x), f1 � f0(x) and

f2 � f1 � f0(x)) before making the product.

This can be a real problem when using an iterative method (for time integration for instance).

Indeed, in this case the intermediate states cannot be recomputed as they will generate a cost of the

order

T � �number of iterations�2 T one iteration:

Therefore they have to be stored.

As we said, our ¯ow solver is explicit, with one external loop for time integration of size KTMAX

as follows:

External Loop in time 1, . . . , KT
Loop over triangles (tetrahedra) 1, . . . , NT

NAT affectations
End loop NT

Loop over edges 1, . . . , NE
NAE affectations

End loop NE

Loop over nodes 1, . . . , NN
NAN affectations

End loop NN

End external loop KT
cost evaluation

Inside each time step we have loops on nodes, segments and tetrahedra (triangles in 2D) of sizes NN,

NS and NT. Inside each internal loop we have some affectations of the type

new_var=expression(old_var)

describing the spatial discretization. The numbers of these affectations are NAN, NAS and NAT.

The required memory to store all the intermediate variables is therefore given by

M � KTMAX � ��NN � NAN � � �NS � NAS� � �NT � NAT ��:
This is out of reach even for quite coarse meshes. To give an idea, for the 3D con®guration presented

here we have

KT � 104; �NN ;NS;NT � � 105; �NAN ;NAS;NAT � � 102;

which makes M� 1011 words� 100 GO, while the available memory is of the order of 100 MO.

6.1. Key points when using AD

To use AD in reverse mode in our optimization problem, we make use of the following remarks.
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Steady ¯ows. The ®rst key remark is that the target applications are steady ¯ows. Therefore, when

computing the gradient by the reverse mode, it is suf®cient to store only one state if we start with an

initial state corresponding to the steady state for a given shape. This reduces the size of our problem

by the number of time step (KTMAX):

M � ��NN � NAN � � �NS � NAS� � �NT � NAT ��:

Inter-procedural differentiation. The second important point is to use inter-procedural derivation.

This means replacing what is inside an internal loop by a subroutine and deriving this subroutine.

This will reduce the required memory to

M � NAN � NAS � NAT ;

but will imply extra calls to subroutines.16 In fact we need less than that, as this memory is allowed in

a dynamical way.

Adjoint accuracy. We saw that, starting from the steady state for a given shape, we only need one

iteration of the forward procedure before starting the reverse integration. Therefore we need to know

what convergence is suf®cient for the adjoint for the optimization to converge. Of course, we can

integrate for a very long time, but this will not be optimal.

We denote by J1 the cost at convergence of the optimization and by Jn the cost at step n. We

notice that at convergence we would like to have HJ1h � 0. Therefore, for the optimization to

converge, it is suf®cient for HJ n
h to be strictly decreasing. This gives the criterion we use in the

reverse computation to stop the reverse time step loop. In other words, we have two different numbers

of time step, one for the forward system (taken equal to one) and another for the adjoint system (very

large), and we leave the reverse time integration loop once the above criterion is satis®ed. We

therefore need to evaluate the cost function inside the time integration loop, but this is cheap (see

programme above).

7. RESULTS

In this section we present 2D and 3D results for inverse as well as optimization problems. We

consider both inviscid and viscous ¯ows in the transonic regime.

As we said, one of our goals is to achieve three-dimensional optimization for compressible ¯ows

on workstations. All these computations have been performed on a workstation making about

10 M¯ops with about 100 MB of memory. 2D con®gurations require a few hours (always less than

3 h, even for the viscous turbulent case) and 3D cases have been computed through the night,

showing that the cost of this approach is quite reasonable. Concerning memory requirements, owing

to the optimization described in the previous section, the reverse mode requires approximately 10

times more memory than the direct solver. This is reasonable, as the direct solver is explicit and

therefore does not require as much memory. All these computations have been performed in simple

precision. An estimation of the memory required by the direct solver is given by 506NN words (1

word� 32 or 64 bits depending on architectures), where NN is the number of nodes. This is more

than is necessary in a structured solver, because the data structures involved are much more

complicated in an unstructured approach.

In the following examples, when global constraints are present, the different penalty coef®cients in

the cost function are chosen for the different quantities involved to have variations of the same order

of magnitude.
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7.1. An inverse problem in 2D (Figures 2±4)

This is a pressure recovery problem over the NACA 0014 aerofoil at in¯ow Mach number 0�85 and

1� of incidence. The inverse problem has been solved using the gradients based on the Roe and Osher

¯uxes with the same second-order construction. We can see that both approaches give the same

results. The cost function is de®ned by

J �x� � 1
2

�
x

jpx ÿ ptargetj2dx; �5�

where ptarget is a given target pressure and px is the actual ¯ow pressure. In this case the cost function

has been reduced by two orders of magnitude in four iterations.

7.2. Drag reduction for an inviscid 2D ¯ow (Figures 5± 9)

This is a drag reduction problem with constraint on the lift coef®cient. The initial aerofoil is the

NACA 0014 at Mach number 0�85 and 1� of incidence. As in the previous example, the gradients

based on the Roe and Osher ¯uxes lead to the same results. The cost function in this case is

J �x� � 1
2

�
x

jpÿ p0j2 � 10Cd � jCl ÿ C0
i j;

Figure 2. 2D inverse problem: pressure distribution. Roe and Osher ¯ux-based gradients give the same results

Figure 3. 2D inverse problem: initial, target and computed shapes
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Figure 4. 2D inverse problem: convergence history for optimization procedure

Figure 5. Inviscid 2D drag reduction: iso-Mach contours over initial shape

Figure 6. Inviscid 2D drag reduction: iso-Mach contours over optimized shape using Roe ¯ux-based gradient
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Figure 7. Inviscid 2D drag reduction: initial and optimized shapes obtained using Roe and Osher ¯ux-based gradients

Figure 8. Inviscid 2D drag reduction: pressure distribution over initial and optimized shapes. The shapes obtained with Roe and
Osher ¯ux-based gradients are almost the same

Figure 9. Inviscid 2D drag reduction: convergence history for optimization procedure with Roe and Osher ¯ux-based gradients

192 B. MOHAMMADI

INT. J. NUMER. METH. FLUIDS, VOL 25: 183±203 (1997) # 1997 by John Wiley & Sons, Ltd.



where Cl and C0
l are the actual and initial lift coef®cients. In this case we obtain an almost shock-free

aerofoil. The cost function has been reduced by one order of magnitude in 12 iterations and the drag

by more than one order. The lift has increased slightly.

7.3. Drag reduction for a 2D transonic turbulent ¯ow (Figures 10±17)

This is a drag reduction problem with constraints on the volume and lift coef®cient. The

optimization has been done for an in¯ow Mach number of 0�85 at 1� of incidence. The initial aerofoil

is a 5 per cent arc aerofoil. Both inviscid and viscous turbulent (at a Reynolds number of 107)

con®gurations have been considered to show the impact of turbulence on the optimized shape. The

cost function is given by

J �x� � 1
2

�
x

jpÿ p0j2 � 10Cd � jCl ÿ C0
l j � jV ÿ V0j;

where Cl and C0
l (resp. V and V0) are the actual and initial lift coef®cients (resp. aerofoil volumes). Of

course, for the viscous case the drag coef®cient includes the viscous effect contributions.

Figure 10. Turbulent versus inviscid 2D drag reduction: partial view of mesh (about 5000 nodes)

Figure 11. Turbulent versus inviscid 2D drag reduction: initial iso-Mach contours for Euler computation
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Figure 12. Turbulent versus inviscid 2D drag reduction: iso-Mach contours for Euler computation over optimized shape

Figure 13. Turbulent versus inviscid 2D drag reduction: iso-Mach contours for turbulent computation

Figure 14. Turbulent versus inviscid 2D drag reduction: iso-Mach contours for turbulent computation over optimized shape
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Figure 15. Turbulent versus inviscid 2D drag reduction: pressure distribution over initial and optimized shapes for viscous
turbulent computation

Figure 16. Turbulent versus inviscid 2D drag reduction: pressure distribution over initial and optimized shapes for inviscid
computation

Figure 17. Turbulent versus inviscid 2D drag reduction: initial and optimized shapes for inviscid and viscous computations
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Figure 18. 3D drag reduction: initial and ®nal shape cross-sections at span station z� 0

Figure 19. 3D drag reduction: initial and ®nal shapes (cross-
section). No by-section de®nition of the wing has been used
for the optimization. There are about 3000 control points on

the wing
Figure 20. 3D drag reduction: initial and ®nal pressure

distributions (cross-section)
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It is interesting to notice that owing to the smoothing effect of the viscosity, it is easier to obtain a

shock-free pro®le for the turbulent ¯ow con®guration than for the corresponding inviscid case.

Therefore, once the dif®culties related to the introduction of new non-linear operators are removed,

treating viscous cases becomes easier than treating inviscid ones. Of course, the CPU issue remains.

In this case we used the same mesh for both inviscid and viscous computations. The mesh is therefore

unnecessarily too ®ne for the inviscid computation. This might also explain why the optimization was

easier for the viscous ¯ow. In all cases the major dif®culty comes from the evaluation of the Jacobian

for the Navier±Stokes and k±e systems, something which is quite painful to achieve without

automatic differentiation.

7.4. 3D inviscid drag reduction (Figures 18±22)

This is a shock-induced drag reduction case in 3D on a swept wing with constraint on the wing

volume. The RAE 2822 has been used to obtain a 3D wing after translation, zoom and rotation. The

design takes place at an in¯ow Mach number of 0�85 and 1� of incidence. The mesh has about

36 105 tetrahedra and is unstructured. There are about 3000 control points on the wing. The by-

section de®nition of the wing is not available and the presented cross-section results have been

obtained by interpolation. The cost function is given by

J �x� � Cd � jV ÿ V0j:

Figure 21. 3D drag reduction: iso-Mach contours over
upper surface of initial wing

Figure 22. 3D drag reduction: iso-Mach contours over
upper surface of optimized wing

OPTIMAL SHAPE DESIGN FOR TURBULENT FLOWS 197

# 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METH. FLUIDS, VOL 25: 183±203 (1997)



We can see that two sharp shocks are present on the upper and lower surfaces. In the optimized shape

the lower surface is almost shock-free and the shock on the upper surface has been quite smoothed.

The drag has been reduced by about 50 per cent (from 9�86 10±2 to 56 10±2), while the volume

remained almost unchanged (from 0�28 to 0�275) and the lift increased (from 0�48 to 0�55).

8. CONCLUDING REMARKS

Results of optimal shape design for two- and three-dimensional con®gurations of inviscid and

turbulent ¯ows have been presented to feature a new shape optimization approach. The main

ingredients of this technique are the reverse mode of automatic differentiation and a CAD-free

framework making it possible to consider all the wall nodes in an unstructured or structured 2D or 3D

mesh as control points. Preliminary examples show the ability of the method to treat inverse and

control problems involving up to several thousand control parameters. The reverse mode is therefore

a powerful tool for providing the gradient of the discrete operators involved.

It is important to notice that all the iterative schemes used are explicit. A parallel implementation

of this approach is therefore quite simple, except for the gradient computation by reverse mode.

However, this is shown to be cheap. Future work will include more extensive validation of these

techniques in 3D con®gurations. Another aspect of our current research concerns the introduction of

mesh adaption in the optimization procedure. To this end we have to take into account connectivity

changes in the mesh.
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APPENDIX I: FLOW SOLVER

We describe a few ingredients of our ¯ow solver. Consider the following form of the Navier±Stokes

and k±e equations:

@U

@t
� H � �F�U � ÿ N �U �� � S�U �; �6�

where U� (r, ru, rv, rE, rk, re)T is the vector of conservation variables, F and N are the

convective and diffusive operators and S(U)� (0, 0, 0, 0, Sk, Se)
T.

The k±e model4 we use is rather classical and is an extension to compressible ¯ows of its

incompressible version.1,20 The right-hand sides Sk and Se contain the production and destruction

terms for rk and re:

Sk � cmr
k2

e
P ÿ 2

3
rkH � uÿ re; �7�

Se � c1rkP ÿ 2c1

3cm
reH � uÿ c2r

e2

k
: �8�

The constants cm, c1, c2, ce of this model are respectively 0�09, 0�1296, 11=6, 1=1�4245 and P� S :Hu.

The constants c2 and ce are different from their original values of 1�92 and 1=1�3. A justi®cation for

these values can be found in References 5, 6 and 21.
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Discretization

Let Oh�[jTj be a discretization by triangles of the computational domain O and let Oh�[iCi be

its partition into cells (Figure 23). Thus we can associate with each wh 2 Vh, where Vh is the set of

continuous af®ne functions on our triangulation, a w0h piecewise constant function on cells by

w0hjCi �
1

jCij
�

Ci

wh:

Conversely, knowing w0h piecewise constant, wh is obtained as wh�Si� � w0hjCi.

The weak formulation of (6) is: ®nd Uh 2 (Vh)4 such that, 8fh 2 Vh,�
O

@Uh

@t
Fh ÿ

�
O
�Fh ÿ Nh��Uh�H�fh� �

�
@O
�Fh ÿ Nh� � nfh � 0: �9�

This is equivalent to the following weak formulation obtained by taking in the convective part of

(9) for fh the characteristic function of Ci and by using an explicit time integration:

jCij
U n�1

i ÿ Un
i

Dt
�
�
@Ci

Fd�Un� � n � RHS: �10�

We use a centred scheme to compute the right-hand side:

RHS � ÿ
�
Oh

N �U n�H�fh� �
�
@O

N �Un� � nfh:

Moreover, Fd�Un
h � � F�U@O� on @Ci\ @O and elsewhere Fd is a piecewise constant upwinded

approximation of F(U) satisfying�
@Ci

Fd � n �
P
j 6�i

F�U 0jCi
;U 0jCj

�
�
@Ci\Cj

n: �11�

After writing BÄ for the Jacobian of F at Roe's mean values, we take for F the Roe ¯ux9

FRoe�u; v� � 1
2
�F�u� � F�v�� ÿ j ~Bj vÿ u

2
:

Spatial second-order accuracy is obtained by using a MUSCL-like extension involving a combination

of upwind and centred gradients. More precisely, let HUi be an approximation of the gradient of U at

node i. We de®ne the following quantities on the segment [i, j]:

Uij � Ui � 0�5Lim�b�HU �i ij
!
; �1ÿ b��Ui ÿ Uj��;

Uji � Uj ÿ 0�5Lim�b�HU �j ij
!
; �1ÿ b��Uj ÿ Ui�;

Figure 23. Discretization geometry
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where Lim is a Van Albada-type limiter10 given by

Lim�a; b� � 0�5�1� sgn�ab�� �a
2 � a�b� �b2 � a�a

a2 � b2 � 2a
;

with 0< a << 1, and b is a positive constant containing the amount of upwinding, b 2 [0, 1] (here

b � 2
3
. Now the second-order accuracy in space is obtained by replacing U 0i and U 0j in (11) by Uij and

Uji. These techniques have been successfully extended to unstructured meshes in the past.7

Applying this approach to the k±e equations will not guarantee the positivity of rk and re.
Therefore the convective ¯uxes for the turbulent equations are computed using the PSI ¯uctuation-

splitting scheme22 which is positive and linearity-preserving.

The boundary and initial conditions are classical. In particular, a Steger±Warming11 ¯ux-splitting

scheme is used for in¯ow and out¯ow boundaries.

Implementation of wall laws

In weak form (®nite element or ®nite volume approach) the following boundary integrals appear in

the momentum and energy equations in the case of adiabatic walls (~t, ~n) denotes the local orthogonal

basis for a wall node): �
Gw

�S � ~n�ds;
�
Gw

�~uS�~nds;

where S � �m� mt��Hu� HuT ÿ 2
3
H � uI � is the Newtonian strain tensor. We decompose S � ~n over

(~t, ~n):

S � ~n � �S � ~n � ~n�~n� �S � ~n � ~t� � ~t: �12�
In our implementation the ®rst term (Snn) on the right-hand side of (12) is computed explicitly and the

following wall laws are used:

~u � ~n � 0; �S~n � ~t�~t � ÿru2
t~t; ~uS~n � ÿru2

t~u � ~t;
where ut is the friction velocity, the solution of ~u � ~t � utf �ut�. We decompose f(ut) into two parts:

f �ut� � fr�ut� � fc�ut�;
with fr(ut) the non-linear Reichardt equation

fr�y�� � 2�5 log�1� ky�� � 7�8
�

1ÿ eÿy�=11 ÿ y�

11
eÿ0�33y�

�
;

where y+� ruty=m. The fc contribution exists with pressure and convection effects:

fc�y�� �
35Cm
kr2u3

t
log 1� k

�y��2
70

 !
if y�4 5�26; �13�

fc�y�� �
Cd
kru2

t
if y� � 5�26; �14�

where C is explicitly computed as

C � @p
@x
� @ru2

@x
� @ruv

@y
:
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Once, ut is computed, k and e are set to

k � u2
t

c
p

m
a; e � u3

t

kd
min 1; a� 0�2k�1ÿ a�2

c
p

m

 !
;

where d is the distance of the ®ctitious computational domain from the solid wall and

a � min�1; y�=10� reproduces the behaviour of k when d tends to zero. The distance d is given a

priori and is kept constant during the computation.

APPENDIX II: AD, A SIMPLE EXAMPLE

We give a simple example of automatic differentiation in reverse mode. Details of these techniques

can be found in References 14±16. Consider the following Fortran 77 programme:

u1� x

u2� x**2� 2*u1**2
f�u1�u2

The aim is to compute df=dx. In automatic differentiation in reverse mode we consider the lines of the

programme as constraints and associate with each of them a Lagrange multiplier and de®ne an

augmented Lagrangian as follows:

L � u1 � u2 � p1�u2 ÿ x2 ÿ 2u2
1� � p2�u1 ÿ x�:

We know that at the solution we have

@L

@u1

� 1ÿ 2p1u1 � p2 � 0;
@L

@u2

� 1� p1 � 0:

We notice that to ®nd pi, we have to solve the previous set of equations in `reverse' order. Once pi are

known, we have

@L

@x
� df

dx
� ÿ2p1xÿ p2;

which is the Jacobian of f.

DO-IF

Consider the evolution of |u(t)| (non-differentiable) with respect to the initial condition u0. u is the

solution of

du

dt
� ÿau; u�0� � u0:

We use an explicit discretization

ui�1 ÿ ui

Dt
� ÿaui
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which can be programmed as

u � u0;

do i � 1; . . . ;N ;

v � ÿau;

u � u� Dtv;
end do

f � juj:
After expansion via

u1 � u0; v1 � ÿau1; u2 � u1 � Dtv1;

v2 � ÿau2; . . . ; vN � ÿauNÿ1; uN�1 � uN � DtvN ;

we introduce the Lagrangian of the programme as before:

L � juN�1j � p0�u1 ÿ u0� �
PN
i�1

�pi�vi � aui� � p0i�ui�1 ÿ ui � Dtvi��:

Optimality conditions give

@L

@u0

� @f

@u0

� ÿp0;
@L

@u1

� p0 � p1aÿ p01;

@L

@vi

� pi � p0iDt; i � 1; . . . ;N ;
@L

@ui

� piaÿ p0i; i � 1; . . . ;N ;

if �u < 0� @L

@uN�1

� ÿ1� p0N ; if �u � 0� @L

@uN�1

� 1� p0N :

The limit of the method is the memory required to store pi and p0i, especially if internal loops are

present. We can see that the branches of conditional statements are treated separately and that the

results are assembled after derivation.

Limitations

There are a few limitations when using the reverse mode of OdysseÂ e. The most important is that

GOTO instructions should not be used (neither RETURN nor ENTRY). This is logical, as in the

reverse mode we have to follow the graph of the programme in reverse order and using a GOTO

makes the graph much more complicated.
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